УДК 664.662 (45)

В.В. Давидович, И.С. Клочкова

Дальневосточный государственный технический рыбохозяйственный университет, 690087, г. Владивосток, ул. Луговая, 526

ОБОГАЩЕНИЕ ХЛЕБОБУЛОЧНЫХ ИЗДЕЛИЙ ПИЩЕВЫМИ ВОЛОКНАМИ ЗОСТЕРЫ

Рассмотрена возможность использования пищевых волокон Zostera marina в составе хлебобулочных изделий с целью получения нового продукта диетической направленности.

Ключевые слова: морские травы, пищевые волокна, хлебобулочные изделия, обогащение.

V.V. Davidovich, I.S. Klochkova ENRICHMENT OF BAKERY PRODUCTS WITH FOOD FIBER ZOSTERS

The possibility of using Zostera marina fiber as a part of bakery products for the purpose of obtaining a new product of dietary orientation is considered.

Key words: sea grasses, food fibers, bakery products, enrichment.

В современном рационе человека в составе продуктов питания должны присутствовать незаменимые факторы питания – биологически активные вещества, оказывающие позитивное действие на физиологические системы и функции организма.

Так как одним из основных продуктов питания человека являются хлеб и хлебобулочные изделия, то разработка и создание новых изделий с заданным химическим составом позволит расширить ассортимент таких продуктов, а также влиять на здоровье населения в сторону его улучшения.

Для улучшения качества хлеба и придания ему функциональных свойств используется широкое разнообразие растительного сырья. К одному из самых востребованных и наиболее широко применяемых пищевых ингредиентов относятся пищевые волокна. Пищевые волокна, вносимые с растениями, хорошо поддаются регламентации [1]. В соответствии с рекомендациями ФАО/ВОЗ продукт, в 100 г которого содержится 3 г пищевых волокон, рассматривается как источник этого функционального ингридиента, а при содержании 6 г пищевых волокон в 100 г считается продуктом, обогащенным пищевыми волокнами [2].

Пищевые волокна практически не расщепляются в нашем пищеварительном тракте, их используют для похудения и нормализации пищеварения, для ускорения процесса прохождения пищи по желудочно-кишечному тракту, способствуя очищению организма. Структура пищевых волокон способствует адсорбции и выведению вредных веществ [3].

Кроме наземных растений источником пищевых волокон, а также других ценных биологически активных компонентов является водорослевое сырье – добавки из ламинарии [4] и морские травы (Zostera marina) [5,6].

Зостера морская – многолетнее вечнозеленое растение, распространенное у материковых побережий Охотского и Японского морей, западного и восточного побережий о. Сахалин, Курильских островов, восточной Камчатки. Общие запасы Zostera marina составляют порядка 300–350 тыс. т [7].

Морские травы на 75-81 % состоят из воды, содержание сухих веществ колеблется от 19 до 25 %. Органических веществ в этих травах содержится от 77 до 85 %, минеральных – от 14 до 23, белка – от 6 до 12, растворимых углеводов – от 10 до 21 %, клетчатки – от 14 до 21 % сухой массы [7].

В состав пищевых волокон зостеры входят целлюлоза, которая близка по химической структуре к целлюлозе наземных высших растений, и пектин. Пектиновые вещества представляют основную часть органических соединений морских трав и содержатся во всех частях растений (листьях, стеблях, корнях, семенах), в клеточном соке, межклеточной ткани и служат запасным веществом, вовлекаемым в процесс метаболизма растений [1, 5]. В отличие от пектинов наземных растений морской пектин имеет низкую степень метоксилирования, высокую молекулярную массу и содержит уникальный моносахарид апиозу, обуславливающий его устойчивость к действию внеклеточных ферментов. Низкая степень метоксилирования обеспечивает высокие адсорбционные свойства и возможность пролонгированного применения. Морской пектин (зостерин) является полидисперсным по молекулярной массе биополимером, который, проходя по желудочно-кишечному тракту, связывает и выводит из организма ионы тяжёлых металлов, желчные кислоты, патогенные микроорганизмы.

Морская трава зостера на сегодняшний день используется для получения пектиновых веществ — зостерина и его солей (зостератов, аммония, калия и натрия). Коллоидные свойства этих веществ позволяют использовать их в пищевой промышленности в качестве стабилизаторов, загустителей и желирующих добавок при приготовлении пищевых продуктов, а также в качестве основы БАД, относящихся к группе органических природных сорбентов, например, зостерин-ультра, или «Гербамарин» [1, 6].

После переработки зостеры остаются отходы в виде жома, которые рекомендуют использовать для получения кормовых продуктов как сырье для выращивания кормовых дрожжей и других микроорганизмов, а также для получения целлюлозы [8].

Целью наших исследований было изучение возможности использования пищевых волокон морской травы сем. Зостера при производстве хлебобулочных изделий и разработка новой рецептуры хлеба.

На первом этапе исследования была получена добавка, содержащая пищевые волокна зостеры.

Так как морские травы сорбируют на поверхности минеральные вещества, содержащиеся в водной среде, такие как натрий, магний, кальций, калий и др. [1], избыток минеральных солей негативно сказывается на технологической обработке сырья, в дальнейшем для их удаления проводили деминерализацию слабым раствором соляной кислоты, после чего промывали до нейтральной рН.

Промытое сырье измельчали и экстрагировали из него водо- и спирторастворимые компоненты, растворы отфильтровывали. Остаток в виде жома исследовали на содержание пищевых волокон. Для этого использовали гравиметрический метод, основанный на обработке навески смесью концентрированных уксусной и азотной кислот, в результате чего все сложные сопутствующие соединения гидролизуются, окисляются и растворяются, а нерастворимые пищевые волокна остаются без изменений. В результате проведенных исследований было выяснено, что их количество составило от 40 до 43 % от массы сырья.

Большинство пищевых волокон обладают способностью связывать воду и другие вещества, начиная с самых мелких, например, макро- и микроэлементов, моносахаридов, аминокислот, витаминов, желчных кислот, и заканчивая белками, крупными надмолекулярными комплексами пищевых веществ и бактериями. Активность сорбента характеризуется количеством поглощаемого вещества в кг на 1 м³ или 1 кг сорбента; активность может быть выражена в долях или процентах от массы сорбента.

В сухом остатке нерастворимых пищевых волокон проводили определение сорбционной активности. В качестве образцов для сравнения использовали активированный уголь, обладающий высокой поверхностной активностью, и клетчатку ржаную, полученную промышленным способом.

Для этого к навеске материала добавляли 25 см³ 0,2 н раствора йода в йодистом калии и встряхивали в течение 15 мин. Далее раствор отфильтровывали и титровали 0,1 н раствором тиосульфата натрия в присутствии раствора крахмала до полного обесцвечивания раствора.

Наибольшей сорбционной активностью обладал активированный уголь – 22,3 %. Клетчатка ржаная и пищевые волокна зостеры имели одинаковую сорбционную активность, равную 1,6 %.

На следующем этапе работы жом зостеры, содержащий пищевые волокна, высушивали, измельчали и использовали в составе рецептуры хлеба.

Хлеб выпекали по стандартной рецептуре из муки высшего сорта с внесением порошка пищевых волокон зостеры. Норму закладки пищевых волокон рассчитывали исходя из содержания этих веществ в исходном продукте, добавляя к нему количество пищевых волокон, удовлетворяющее 30 % суточной нормы, в пересчете на 100 г продукта. Такая замена позволила сократить рецептурное количество пшеничной муки.

Тесто готовили безопарным способом, замешивали путем смешивания всех ингредиентов, предусмотренных рецептурой, в течение 8-12 мин, формовали. После этого тестовые заготовки поступали на брожение и расстойку (t = 35-40 °C) в течение 2 ч.

Тестовые заготовки выпекали при температуре 215–250 ⁰ C в течение 60 мин.

При проведении исследований использовали в качестве контроля образец без добавления пищевых волокон и образцы с пищевыми волокнами зостеры и конопляной клетчатки с морской капустой.

Качество образцов оценивали по физико-химическим и органолептическим свойствам.

Одним из показателей качества является пористость, которая показывает процентное отношение объема пор к общему объему мякиша. С пористостью хлеба связана его усвояемость. Хорошо разрыхленный хлеб с равномерной мелкой тонкостенной пористостью легко разжевывается, пропитывается пищеварительными соками и поэтому полнее усваивается.

Пористость контрольного образца составила в среднем 76 %, а образцов с пищевыми волокнами зостеры и конопляной клетчатки с морской капустой – 79 и 75 % соответственно.

Кислотность образцов соответствовала ГОСТ 27842-88. «Хлеб из пшеничной муки. Технические условия» и составляла в среднем 2,8 град., влажность образцов – 42,8 %.

Органолептические показатели образцов представлены в таблице.

Органолептические показатели хлеба, обогащенного пищевыми волокнами морской травы зостера

Organoleptic characteristics of bread enriched with food fibers of sea grass zoster

Образец	Показатель	Описание
1	2	3
Пшеничный хлеб	Поверхность	Без трещин и подрывов
(контроль)	Цвет	Золотистый
	Мякиш	Эластичный, после надавливания мякиш принимает первона-
		чальную форму
	Пористость	Без пустот и уплотнений
	Запах	Свойственный данному виду продукта
	Вкус	Свойственный данному виду продукта. Сладковатый
Пшеничный хлеб	Поверхность	Без трещин и подрывов
с пищевыми во-	Цвет	Темно-коричневый
локнами зостеры	Мякиш	Эластичный
	Пористость	Без уплотнений и пустот
	Запах	Свойственный данному виду продукта
	Вкус	Свойственный данному виду продукта. Сладковат

Окончание	таблины
OKOHTAHINC	таолицы

1	2	3
Пшеничный хлеб	Поверхность	Без трещин и подрывов
с конопляной	Цвет	Светло-желтый
клетчаткой и	Мякиш	Не влажный, эластичный. Наблюдаются включения, соответст-
морской капустой		вующие внесенному компоненту
	Пористость	Равномерная, без уплотнений и пустот
	Запах	Свойственный данному виду продукта, легкий запах водорослей
	Вкус	Свойственный данному виду продукта. Сладковат. Ощущается
		хруст на зубах от внесенного компонента

Внесение пищевых волокон морской травы Zostera marina положительно влияет на органолептические показатели пшеничного хлеба, в отличие от других образцов он обладает слабо выраженным сладковатым привкусом и приятным послевкусием. Отличительным является цвет изделия — он темно-коричневый с бурым оттенком, свойственный данному виду вносимого компонента.

Количество вносимых пищевых волокон необходимо корректировать при выпуске опытных партий продукта. В случае необходимости в расчеты вносят поправки, и норма их закладки уточняется окончательно.

На основании проведенных исследований был разработан новый вид хлебобулочного изделия, обогащенного пищевыми волокнами зостеры. Добавление пищевых волокон положительно сказывается на вкусе изделия и структуре мякиша, а замена рецептурной части муки на измельченные пищевые волокна позволит снизить общую калорийность и обеспечит функциональную направленность готового продукта.

Список литературы

- 1. Мезенова О.Я., Сергеева Т.Н, Байдалинова Л.С. Биотехнология гидробионтов: монография. Изд-во LAP LAMBERT, 2011. 466 с.
- 2. Ипатова Л.Г. и др. Физиологические и технологические аспекты применения пищевых волокон // Пищевые ингредиенты. Сырье и добавки. 2004. № 1. С.14–17.
- 3. Доронин А.Ф., Ипатова Л.Г., Кочеткова А.А. и др. Функциональные пищевые продукты. Введение в технологии. М., 2009.
- 4. Цуканова Л.Н., Цыганова Т.Б., Цуканов М.Ф., Бокова Е.М. Разработка диетических хлебобулочных изделий с включением ламинарии сушеной // Хлебопечение России. 2005. № 5.
- 5. Титлянов Э.А., Титлянова Т.В., Белоус О.С. Полезные вещества морских зеленых макроводрослей (CHLOROPHYTA) и морских трав (MAGNOLIOPHYTA): структура, содержание, накопление и использование // Изв. ТИНРО. Владивосток, 2011. С. 283–296.
- 6. Артюков А.А. Разработка биотехнологических основ получения некоторых биологически активных веществ из океанического сырья: автореф. дис. ... канд. техн. наук. Владивосток, 2012.
- 7. Суховеева М.В., Подкорытова А.В. Промысловые водоросли и травы морей Дальнего Востока: биология, распространение, запасы, технология переработки. Владивосток: ТИНРО-Центр, 2006. 243 с.
- 8. Пат. РФ № 2445780. Способ получения пищевых волокон из водорослевого сырья / Подкорытова А.В., Игнатова Т.А., Родина Т.В. и др. Опубл. 27.03.2012.

Сведения об авторах: Давидович Валентина Владимировна, кандидат технических наук, доцент, e-mail: davidvalentina@yandex.ru;

Клочкова Ирина Сергеевна, кандидат технических наук, доцент, e-mail: irishanet@ maile.ru.